Connect with us

Science

A strange intermittent radio signal from space has astronomers puzzled

Published

on

When astronomers turn our radio telescopes out towards space, we sometimes detect sporadic bursts of radio waves originating from across the vast expanse of the universe. (Pexels Photo)

When astronomers turn our radio telescopes out towards space, we sometimes detect sporadic bursts of radio waves originating from across the vast expanse of the universe. We call them “radio transients”: some erupt only once, never to be seen again, and others flicker on and off in predictable patterns.

We think most radio transients come from rotating neutron stars known as pulsars, which emit regular flashes of radio waves, like cosmic lighthouses. Typically, these neutron stars spin at incredible speeds, taking mere seconds or even a fraction of a second to complete each rotation.

Recently, we discovered a radio transient that isn’t like anything astronomers have seen before. Not only does it have a cycle almost an hour long (the longest ever seen), but over several observations we saw it sometimes emitting long, bright flashes, sometimes fast, weak pulses – and sometimes nothing at all.

We can’t quite explain what’s going on here. It’s most likely a very unusual neutron star, but we can’t rule out other possibilities. Our research is published in Nature Astronomy.

A lucky find

Meet ASKAP J1935+2148 (the numbers in the name point to its location in the sky). This periodic radio transient was discovered using CSIRO’s ASKAP radio telescope on Wajarri Yamaji Country in outback Western Australia.

The telescope has a very wide field of view, which means it can survey large volumes of the universe very quickly. This makes it very well suited for detecting new and exotic phenomena.

Using ASKAP, we were simultaneously monitoring a source of gamma rays and searching for pulses from a fast radio burst, when we spotted ASKAP J1935+2148 slowly flashing in the data. The signal leapt out because it was made up of “circularly polarised” radio waves, which means the direction of the waves corkscrews around as the signal travels through space.

Our eyes cannot differentiate between circularly polarised light and ordinary unpolarised light. However, ASKAP functions like a pair of polaroid sunglasses, filtering out the glare from thousands of ordinary sources.

After the initial detection, we conducted further observations over several months using ASKAP and also the more sensitive MeerKAT radio telescope in South Africa.

The slowest radio transient ever found

ASKAP J1935+2148 belongs to the relatively new class of long-period radio transients. Only two others have ever been found, and ASKAP J1935+2148’s 53.8 minute period is by far the longest.

However, the exceptionally long period is just the beginning. We have seen ASKAP J1935+2148 in three distinct states or modes.

An animated image showing a dark region of space with a cloud of glowing red and what appear to be three fixed stars and one slowly blinking on and off.
ASKAP J1935+2148 blinking on and off. The glowing cloud above is the remains of a long-ago exploded star called a supernova remnant.
Emil Lenc, CC BY-NC

In the first state, we see bright, linearly (rather than circularly) polarised pulses lasting from 10 to 50 seconds. In the second state, there are much weaker, circularly polarised pulses lasting only about 370 milliseconds. The third state is a quiet or quenched state, with no pulses at all.

These different modes, and the switching between them, could result from an interplay of complex magnetic fields and plasma flows from the source itself with strong magnetic fields in the surrounding space.

Similar patterns have been seen in neutron stars, but our current understanding of neutron stars suggests they should not be able to have such a long period.

Neutron stars and white dwarfs

The origin of a signal with such a long period remains a profound mystery, with a slow-spinning neutron star the prime suspect. However, we cannot rule out the possibility the object is a white dwarf – the Earth-sized cinder of a burnt-out star that has exhausted its fuel.

White dwarfs often have slow rotation periods, but we don’t know of any way one could produce the radio signals we are seeing here. What’s more, there are no other highly magnetic white dwarfs nearby, which makes the neutron star explanation more plausible.

One explanation might be that the object is part of a binary system in which a neutron star or white dwarf orbits another unseen star.

This object might prompt us to reconsider our decades-old understanding of neutron stars or white dwarfs, particularly in how they emit radio waves and what their populations are like within our galaxy. Further research is needed to confirm what the object is, but either scenario would provide valuable insights into the physics of these extreme objects.

The search continues

We don’t know how long ASKAP J1935+2148 has been emitting radio signals, as radio astronomy surveys don’t usually search for objects with periods this long. Moreover, radio emissions from this source are only detected for a mere 0.01% to 1.5% of its rotation period, depending on its emission state.

So we were quite fortunate we happened to catch sight of ASKAP J1935+2148. It’s quite likely there are many other objects like it elsewhere in our galaxy, waiting to be discovered.The Conversation

Manisha Caleb, Lecturer, University of Sydney and Emil Lenc, Research Scientist, Space and Astronomy, CSIRO

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Maria in Vancouver

Lifestyle2 weeks ago

Nobody Wants This…IRL (In Real Life)

Just like everyone else who’s binged on Netflix series, “Nobody Wants This” — a romcom about a newly single rabbi...

Lifestyle3 weeks ago

Family Estrangement: Why It’s Okay

Family estrangement is the absence of a previously long-standing relationship between family members via emotional or physical distancing to the...

Lifestyle2 months ago

Becoming Your Best Version

By Matter Laurel-Zalko As a woman, I’m constantly evolving. I’m constantly changing towards my better version each year. Actually, I’m...

Lifestyle2 months ago

The True Power of Manifestation

I truly believe in the power of our imagination and that what we believe in our lives is an actual...

Maria in Vancouver3 months ago

DECORATE YOUR HOME 101

By Matte Laurel-Zalko Our home interiors are an insight into our brains and our hearts. It is our own collaboration...

Maria in Vancouver4 months ago

Guide to Planning a Wedding in 2 Months

By Matte Laurel-Zalko Are you recently engaged and find yourself in a bit of a pickle because you and your...

Maria in Vancouver4 months ago

Staying Cool and Stylish this Summer

By Matte Laurel-Zalko I couldn’t agree more when the great late Ella Fitzgerald sang “Summertime and the livin’ is easy.”...

Maria in Vancouver5 months ago

Ageing Gratefully and Joyfully

My 56th trip around the sun is just around the corner! Whew. Wow. Admittedly, I used to be afraid of...

Maria in Vancouver6 months ago

My Love Affair With Pearls

On March 18, 2023, my article, The Power of Pearls was published. In that article, I wrote about the history...

Maria in Vancouver6 months ago

7 Creative Ways to Propose!

Sometime in April 2022, my significant other gave me a heads up: he will be proposing to me on May...