Connect with us

Science

Scientists can’t agree about Chernobyl’s impact on wildlife

Published

on

Is Chernobyl a radioactive wasteland reeling from chronic radiation, or a post-nuclear paradise with thriving populations of animals and other life forms? Studies don’t always agree about levels of mutations and other ill effects. (File Photo: Uwe Brodrecht/Flickr, CC BY-SA 2.0)

Thirty-five years after the meltdown at the Chernobyl nuclear power plant in northern Ukraine, reports often portray the area as a paradise for wildlife. Photos show foxes roaming the buildings of abandoned towns and bison and wild horses flourishing after people were permanently evacuated. But to some scientists, nature isn’t doing as well as it seems.

In fact, a debate roils in the scientific literature about the health of the microbes, fungi, plants and animals that live around Chernobyl. Some scientists have documented thriving wildlife now that people have left, suggesting that lingering radioactive contamination doesn’t pose a significant threat. But other scientists have found mostly negative effects of radiation on the health and abundance of creatures, from birds to mammals, with many populations smaller in more heavily contaminated areas. This controversy has only sharpened in recent years.

Ultimately, “there’s a grain of truth in all of these studies,” says David Copplestone, a radioecologist at the University of Stirling in Scotland. The question is with interpretation. At the heart of the debate is not so much whether chronic radiation has any effect on living things, but at what dose the effects become significant. Radiation levels around Chernobyl have plummeted since the initial accident, but creatures that have reclaimed the area remain chronically exposed to low levels.

Figuring out whether this radiation causes harm — and if so, how and how much — is critical to understanding not just how the largest nuclear accident in history changed the environment, but also how chronic, low-level radiation affects living things generally. Examining why scientists reach different conclusions, and how recent research shines new light on the debate, gets us closer to the answer.

Immediate fallout

When a safety system test at one of the Chernobyl power plant’s reactors went badly wrong in April 1986, explosions unleashed a fiery plume of debris and radioactive atoms, or radionuclides, into the air that, over several days, may have emitted several hundred times more radiation than the atomic bomb dropped on Hiroshima. More than two dozen first responders died within months after rapidly absorbing doses of up to 13,400 millisieverts (a sievert is a unit of radiation absorption; normal background radiation levels are usually around 1.5 to 3.5 millisieverts a year.) Over subsequent decades, thousands of children and adolescents who likely absorbed somewhat lower doses developed thyroid cancer, a cancer type that, fortunately, most tend to survive.

Flora and fauna also suffered in the initial aftermath. A 600-hectare patch of pine trees died, along with many resident mammals and invertebrates in the area. The area with the trees’ skeletal remains is now called the Red Forest. The 1,600-square mile exclusion zone around the plant has remained largely devoid of people since the accident.

As time passed and the most dangerous radionuclides decayed, the zone became less inhospitable. The radionuclide iodine-131, for instance, vanished by the summer of 1986, leaving slower-decaying ones like cesium-137 and strontium-90 scattered unevenly across and within the zone’s soils, vegetation, fungi and animals. Today, radiation levels are generally below what would induce acute radiation sickness and range from 0.4 millisieverts per hour in the Red Forest — thousands of times higher than background levels and dangerous to live in — to levels even lower than typical background radiation.

Normal background radiation levels aren’t usually harmful, because living things have biological mechanisms in place to prevent and repair small levels of damage, explains Kathryn Higley, a health physicist specializing in radioecology at Oregon State University. But it’s still a mystery exactly when and how harm starts to accrue for different species as radiation levels increase. The patchwork radiation landscape around Chernobyl creates an ideal setting to study this question.

But studying Chernobyl’s radioactive ecosystem also poses a mammoth challenge. Though scientists know how radiation affects individual cells — by causing DNA mutations or a type of molecular damage called oxidative stress, for instance — it’s proved hard to predict how that affects whole animals over their lifespans, Higley says. And it’s especially tricky to parse these effects — if they exist at all at very low doses — in the messiness of real-world ecosystems. Yet that, she says, is “the area of real interest right now.”

A statistical meltdown

When the first reports on wildlife in the Chernobyl zone came to international attention in the early years of this century, scientists described it as flourishing in the absence of people. But two evolutionary biologists who teamed up to study the area’s birds around that time,  Anders Møller of University Paris-Saclay in France and  Timothy Mousseau of the University of South Carolina, presented a different picture. Their surveys showed that certain bird  species tended to have more genetic mutationssmaller brains and  less viable sperm in sites with higher radiation levels. And in 2007,  they counted 66 percent fewer birds — and 50 percent fewer bird species — in highly radioactive places compared to background-level sites.

In dozens of studies, the pair also documented that, with higher radiation levels, there were significantly lower numbers of soil invertebrates and a  lower abundance of certain insect species and  such mammals as hares and foxes. Working with collaborators in Finland, they also documented  a range of  health effects in bank voles.

The pair documented a steady correlation between radiation levels and effects, such that the higher the radiation levels, the more pronounced the effects were. This relationship held even at radiation levels below what scientists had thought capable of causing harm, they observed. “It was a huge surprise for us to see all of these pretty straightforward and large consequences of this kind of exposure across multiple species,” says Mousseau, who wrote about his and others’ Chernobyl research in the 2021 Annual Review of Ecology, Evolution, and Systematics.

Some other scientists have criticized much of the pair’s research for various reasons, one being caution about Møller’s work due to  earlier scientific misconduct allegations. (Møller says the misconduct investigation was inherently flawed, for reasons he outlined in a  statement; a French investigation  didn’t find evidence of deliberate fraud, and the work in question doesn’t include the radiation studies.) Another common critique is that Møller and Mousseau may have underestimated the radiation doses that the creatures they studied had been exposed to, because they didn’t account for radionuclides that animals had ingested or inhaled. When other scientists reanalyzed Mousseau’s data on a dozen mammal species, they found that  radiation had indeed caused declines in abundance, but only at higher doses than the pair had originally reported.

But some other research teams have not found significant radiation effects on the genetic diversity or  abundance of certain animals around Chernobyl. In one widely publicized 2015 survey of a Belarus area near the power plant, a team of scientists determined that the  numbers of elk, roe deer and wild boar were similar to those in radiation-free nature reserves in the region. No matter what the consequences of lingering radiation might be, there were massive benefits to people leaving.

A later report also found no evidence that radiation reduced the density of mammal populations across the landscape, even in highly contaminated parts of the zone. Neither study rules out the possibility that radiation has negative effects on individual animals but hasn’t affected population size, says wildlife ecologist  James Beasley of the University of Georgia, who was involved in both studies. “If there were any effects, they just weren’t sufficient to suppress the population growth in those animals.”

Beasley and Tom Hinton — a now-retired radioecologist formerly at Fukushima University’s Institute of Environmental Radioactivity — have also been sampling for DNA mutations in the region surrounding the  Fukushima Daiichi nuclear power plant in Japan, which experienced a less severe meltdown and radiation release after an earthquake and tsunami in 2011. Nearby mice had certain genetic aberrations in the immediate aftermath of the accident. But at least some animals didn’t show lasting effects.

By 2016, when radiation levels had fallen substantially, Hinton, Beasley and their colleagues didn’t find any signs that radiation was causing DNA damage in the cells of rat snakes and wild boar. This was despite the fact that the animals were absorbing radiation doses similar to those for which Hinton sees effects in Mousseau’s Chernobyl data. “I have yet to be able to duplicate anything that Møller and Mousseau have published,” Hinton says.

The stubborn discrepancies have caused some members of each camp to become distrustful of the other’s conclusions, and on some occasions the debate has turned personal. In 2015, the International Union for Radioecology, a nonprofit group of radiation scientists, invited researchers from both sides to a meeting in Miami, striving to reach a consensus. But the conversation became so heated, “they started hurling insults at each other,” recalls McMaster University radiobiologist Carmel Mothersill, the IUR’s treasurer. The only conclusion they could reach was that “everything is so uncertain in the low-dose region that you can’t attribute anything definitively to the radiation dose.”

The debate is still unresolved. Scientists from each camp list several reasons for the discrepancies around Chernobyl, including research methods, statistical techniques and the possibility that environmental factors other than an animal’s direct radiation exposure explain the observations. For instance, the Red Forest, where many of Mousseau and Møller’s study sites are, has high radiation levels, but is also relatively barren of vegetation. That makes it hard to say for sure whether the animals there are suffering from radiation or simply poor habitat, Copplestone and his colleagues have argued. (Some of Copplestone’s research is funded through a  program partly supported by a nuclear waste disposal company.)

Mousseau, for his part, notes that some of the studies that contradict his were conducted in a patch of Belarus that is wilder and less developed than the exclusion zone in Ukraine, where wildlife probably recovered from the disaster more quickly and would be expected to flourish. And Olena Burdo, a radioecologist at the Kiev Institute for Nuclear Research, thinks that foreign scientists who visit the exclusion zone only infrequently might be neglecting subtle changes to the ecosystem brought on by events like wildfires or floods. These, she’s learned, can change how radionuclides — and animal populations themselves — are distributed across the landscape.

Mousseau doesn’t doubt that some species in the least contaminated parts of the zone are doing well and maybe even better than in outside areas due to the absence of people. And other scientists agree that there are some effects of radiation in the hottest parts of the zone, but only for certain species; some of Copplestone’s recent laboratory research, for instance, hints that bumble bees — which, like most invertebrates, were previously thought to be quite resistant to radiation — experience the toll of radiation at levels comparable to those within the Red Forest.

The debate is largely in the gray area in between: At what radiation levels does significant harm kick in, and for which species? Since different species may respond very differently to radiation, “it’s not black and white,” says radioecologist Christelle Adam-Guillermin of France’s Radioprotection and Nuclear Safety Institute. Even when animals exposed to extremely low radiation doses show signs of harm, it’s up for discussion whether the troubles can be definitively attributed to radiation itself. “It’s really difficult to have a sharp conclusion,” she says.

Another factor may contribute to the confusion: It’s possible that many of the ill health effects observed in Chernobyl’s wildlife don’t necessarily result from the radiation they’re currently absorbing but are, instead, inherited from their ancestors who survived the fallout from the initial blast in 1986. Scientists know from laboratory studies that even when small bursts of radiation have no immediate effect on cells, or the cells they give rise to when they divide, cells generations later — the cellular grandchildren, as it were — sometimes develop mutations, die or fail to multiply.

Without inheriting mutations directly, these cells may inherit a greater potential to develop mutations. Researchers suspect this is due to changes in the epigenome — small molecules attached to DNA that influence genetic activity — which can be passed down through generations.

Indeed, in one experiment, Belarussian scientists captured two pregnant bank voles living near the Chernobyl plant and kept them in a radiation-free lab. Remarkably, bone marrow cells of the voles’ offspring showed just as many genetic mutations as those of voles living in highly contaminated areas, even though they themselves were never exposed to strong radiation, the team reported in 2006. Using statistical models to estimate this ancestral dose from the past, Mothersill, with Mousseau and others, has  concluded that mutations in Chernobyl’s birds today might well be  partly caused by their ancestors’ experiences with the blast. (Both Mothersill and Mousseau note that ongoing radiation could still pose an additional stress.)

If the theory holds up, scientists have been overlooking a potentially very powerful influence on the biology of creatures around Chernobyl: that any health impacts they are suffering may have little to do with the doses they’re exposed to in their own lifetime, but result from what their ancestors experienced. This, Mothersill believes, “could reconcile the people that find very dangerous effects and the people who find no effects.”

Added to that is the complication that animals in the zone have probably moved around since 1986, or even come in from outside the zone. The zone, in other words, might be a disorderly hodgepodge of individuals whose ancestors may or may not have been exposed to a given level of radiation, making it difficult to parse out any radiation-related trends.

In another twist, some animal and plant populations might be faring well today because they’ve adapted to the radiation. European tree frogs around Chernobyl are much darker than frogs found outside the area, according to unpublished research by Germán Pereda of the University of Oviedo in Spain and his colleagues. He hypothesizes that since the accident, they have evolved to produce more melanin in their skin to protect themselves from radiation. (Mousseau says he has seen no convincing evidence that animals in the region have adapted to higher radiation levels.)

In the same vein, scientists have observed that certain cells of bank voles produce heightened levels of antioxidants, which could help to protect against radiation-induced toxicity. And researchers in Ukraine and the UK have spotted signs that some  birch pollen and evening primrose seeds have become better at repairing DNA damage since the late 1980s.

But to truly grasp how life responds to nuclear disasters, scientists will need to dig deeper. Most of the studies to date have relied on correlations between radiation levels and wildlife health. Instead, researchers should be designing experiments that can more definitively ascertain that radiation is indeed causing the observed effects, says evolutionary biologist Anton Lavrinienko of the University of Jyväskylä in Finland, who collaborated with Mousseau on the vole studies. “We need to stop generating studies which are scratching the surface,” he says. “This is something that we’re trying to change.”

Until then, blissfully ignorant of the fiery debate around them, wildlife in the Chernobyl exclusion zone will continue to do what they do best: burrowing, hunting, flying and mating in their secluded, radioactive sliver of the Earth. Radioecologists will follow this experiment for decades, and — hopefully — they’ll eventually agree on the results.

Editor’s note: This article has been amended to clarify that the report of frogs adapting to higher radiation levels is still unpublished and to note the uncertain status of evidence for such adaptations at Chernobyl.

This article originally appeared in Knowable Magazine, an independent journalistic endeavor from Annual Reviews. Sign up for the newsletter.

Knowable Magazine | Annual Reviews
xosotin chelseathông tin chuyển nhượngcâu lạc bộ bóng đá arsenalbóng đá atalantabundesligacầu thủ haalandUEFAevertonxosofutebol ao vivofutemaxmulticanaisonbethttps://bsport.fithttps://onbet88.ooohttps://i9bet.bizhttps://hi88.ooohttps://okvip.athttps://f8bet.athttps://fb88.cashhttps://vn88.cashhttps://shbet.atbóng đá world cupbóng đá inter milantin juventusbenzemala ligaclb leicester cityMUman citymessi lionelsalahnapolineymarpsgronaldoserie atottenhamvalenciaAS ROMALeverkusenac milanmbappenapolinewcastleaston villaliverpoolfa cupreal madridpremier leagueAjaxbao bong da247EPLbarcelonabournemouthaff cupasean footballbên lề sân cỏbáo bóng đá mớibóng đá cúp thế giớitin bóng đá ViệtUEFAbáo bóng đá việt namHuyền thoại bóng đágiải ngoại hạng anhSeagametap chi bong da the gioitin bong da lutrận đấu hôm nayviệt nam bóng đátin nong bong daBóng đá nữthể thao 7m24h bóng đábóng đá hôm naythe thao ngoai hang anhtin nhanh bóng đáphòng thay đồ bóng đábóng đá phủikèo nhà cái onbetbóng đá lu 2thông tin phòng thay đồthe thao vuaapp đánh lô đềdudoanxosoxổ số giải đặc biệthôm nay xổ sốkèo đẹp hôm nayketquaxosokq xskqxsmnsoi cầu ba miềnsoi cau thong kesxkt hôm naythế giới xổ sốxổ số 24hxo.soxoso3mienxo so ba mienxoso dac bietxosodientoanxổ số dự đoánvé số chiều xổxoso ket quaxosokienthietxoso kq hôm nayxoso ktxổ số megaxổ số mới nhất hôm nayxoso truc tiepxoso ViệtSX3MIENxs dự đoánxs mien bac hom nayxs miên namxsmientrungxsmn thu 7con số may mắn hôm nayKQXS 3 miền Bắc Trung Nam Nhanhdự đoán xổ số 3 miềndò vé sốdu doan xo so hom nayket qua xo xoket qua xo so.vntrúng thưởng xo sokq xoso trực tiếpket qua xskqxs 247số miền nams0x0 mienbacxosobamien hôm naysố đẹp hôm naysố đẹp trực tuyếnnuôi số đẹpxo so hom quaxoso ketquaxstruc tiep hom nayxổ số kiến thiết trực tiếpxổ số kq hôm nayso xo kq trực tuyenkết quả xổ số miền bắc trực tiếpxo so miền namxổ số miền nam trực tiếptrực tiếp xổ số hôm nayket wa xsKQ XOSOxoso onlinexo so truc tiep hom nayxsttso mien bac trong ngàyKQXS3Msố so mien bacdu doan xo so onlinedu doan cau loxổ số kenokqxs vnKQXOSOKQXS hôm naytrực tiếp kết quả xổ số ba miềncap lo dep nhat hom naysoi cầu chuẩn hôm nayso ket qua xo soXem kết quả xổ số nhanh nhấtSX3MIENXSMB chủ nhậtKQXSMNkết quả mở giải trực tuyếnGiờ vàng chốt số OnlineĐánh Đề Con Gìdò số miền namdò vé số hôm nayso mo so debach thủ lô đẹp nhất hôm naycầu đề hôm naykết quả xổ số kiến thiết toàn quốccau dep 88xsmb rong bach kimket qua xs 2023dự đoán xổ số hàng ngàyBạch thủ đề miền BắcSoi Cầu MB thần tàisoi cau vip 247soi cầu tốtsoi cầu miễn phísoi cau mb vipxsmb hom nayxs vietlottxsmn hôm naycầu lô đẹpthống kê lô kép xổ số miền Bắcquay thử xsmnxổ số thần tàiQuay thử XSMTxổ số chiều nayxo so mien nam hom nayweb đánh lô đề trực tuyến uy tínKQXS hôm nayxsmb ngày hôm nayXSMT chủ nhậtxổ số Power 6/55KQXS A trúng roycao thủ chốt sốbảng xổ số đặc biệtsoi cầu 247 vipsoi cầu wap 666Soi cầu miễn phí 888 VIPSoi Cau Chuan MBđộc thủ desố miền bắcthần tài cho sốKết quả xổ số thần tàiXem trực tiếp xổ sốXIN SỐ THẦN TÀI THỔ ĐỊACầu lô số đẹplô đẹp vip 24hsoi cầu miễn phí 888xổ số kiến thiết chiều nayXSMN thứ 7 hàng tuầnKết quả Xổ số Hồ Chí Minhnhà cái xổ số Việt NamXổ Số Đại PhátXổ số mới nhất Hôm Nayso xo mb hom nayxxmb88quay thu mbXo so Minh ChinhXS Minh Ngọc trực tiếp hôm nayXSMN 88XSTDxs than taixổ số UY TIN NHẤTxs vietlott 88SOI CẦU SIÊU CHUẨNSoiCauVietlô đẹp hôm nay vipket qua so xo hom naykqxsmb 30 ngàydự đoán xổ số 3 miềnSoi cầu 3 càng chuẩn xácbạch thủ lônuoi lo chuanbắt lô chuẩn theo ngàykq xo-solô 3 càngnuôi lô đề siêu vipcầu Lô Xiên XSMBđề về bao nhiêuSoi cầu x3xổ số kiến thiết ngày hôm nayquay thử xsmttruc tiep kết quả sxmntrực tiếp miền bắckết quả xổ số chấm vnbảng xs đặc biệt năm 2023soi cau xsmbxổ số hà nội hôm naysxmtxsmt hôm nayxs truc tiep mbketqua xo so onlinekqxs onlinexo số hôm nayXS3MTin xs hôm nayxsmn thu2XSMN hom nayxổ số miền bắc trực tiếp hôm naySO XOxsmbsxmn hôm nay188betlink188 xo sosoi cầu vip 88lô tô việtsoi lô việtXS247xs ba miềnchốt lô đẹp nhất hôm naychốt số xsmbCHƠI LÔ TÔsoi cau mn hom naychốt lô chuẩndu doan sxmtdự đoán xổ số onlinerồng bạch kim chốt 3 càng miễn phí hôm naythống kê lô gan miền bắcdàn đề lôCầu Kèo Đặc Biệtchốt cầu may mắnkết quả xổ số miền bắc hômSoi cầu vàng 777thẻ bài onlinedu doan mn 888soi cầu miền nam vipsoi cầu mt vipdàn de hôm nay7 cao thủ chốt sốsoi cau mien phi 7777 cao thủ chốt số nức tiếng3 càng miền bắcrồng bạch kim 777dàn de bất bạion newsddxsmn188betw88w88789bettf88sin88suvipsunwintf88five8812betsv88vn88Top 10 nhà cái uy tínsky88iwinlucky88nhacaisin88oxbetm88vn88w88789betiwinf8betrio66rio66lucky88oxbetvn88188bet789betMay-88five88one88sin88bk88xbetoxbetMU88188BETSV88RIO66ONBET88188betM88M88SV88Jun-68Jun-88one88iwinv9betw388OXBETw388w388onbetonbetonbetonbet88onbet88onbet88onbet88onbetonbetonbetonbetqh88mu88Nhà cái uy tínpog79vp777vp777vipbetvipbetuk88uk88typhu88typhu88tk88tk88sm66sm66me88me888live8live8livesm66me88win798livesm66me88win79pog79pog79vp777vp777uk88uk88tk88tk88luck8luck8kingbet86kingbet86k188k188hr99hr99123b8xbetvnvipbetsv66zbettaisunwin-vntyphu88vn138vwinvwinvi68ee881xbetrio66zbetvn138i9betvipfi88clubcf68onbet88ee88typhu88onbetonbetkhuyenmai12bet-moblie12betmoblietaimienphi247vi68clupcf68clupvipbeti9betqh88onb123onbefsoi cầunổ hũbắn cáđá gàđá gàgame bàicasinosoi cầuxóc đĩagame bàigiải mã giấc mơbầu cuaslot gamecasinonổ hủdàn đềBắn cácasinodàn đềnổ hũtài xỉuslot gamecasinobắn cáđá gàgame bàithể thaogame bàisoi cầukqsssoi cầucờ tướngbắn cágame bàixóc đĩaAG百家乐AG百家乐AG真人AG真人爱游戏华体会华体会im体育kok体育开云体育开云体育开云体育乐鱼体育乐鱼体育欧宝体育ob体育亚博体育亚博体育亚博体育亚博体育亚博体育亚博体育开云体育开云体育棋牌棋牌沙巴体育买球平台新葡京娱乐开云体育mu88qh88
Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Maria in Vancouver

Lifestyle2 weeks ago

Nobody Wants This…IRL (In Real Life)

Just like everyone else who’s binged on Netflix series, “Nobody Wants This” — a romcom about a newly single rabbi...

Lifestyle3 weeks ago

Family Estrangement: Why It’s Okay

Family estrangement is the absence of a previously long-standing relationship between family members via emotional or physical distancing to the...

Lifestyle2 months ago

Becoming Your Best Version

By Matter Laurel-Zalko As a woman, I’m constantly evolving. I’m constantly changing towards my better version each year. Actually, I’m...

Lifestyle2 months ago

The True Power of Manifestation

I truly believe in the power of our imagination and that what we believe in our lives is an actual...

Maria in Vancouver3 months ago

DECORATE YOUR HOME 101

By Matte Laurel-Zalko Our home interiors are an insight into our brains and our hearts. It is our own collaboration...

Maria in Vancouver4 months ago

Guide to Planning a Wedding in 2 Months

By Matte Laurel-Zalko Are you recently engaged and find yourself in a bit of a pickle because you and your...

Maria in Vancouver4 months ago

Staying Cool and Stylish this Summer

By Matte Laurel-Zalko I couldn’t agree more when the great late Ella Fitzgerald sang “Summertime and the livin’ is easy.”...

Maria in Vancouver5 months ago

Ageing Gratefully and Joyfully

My 56th trip around the sun is just around the corner! Whew. Wow. Admittedly, I used to be afraid of...

Maria in Vancouver6 months ago

My Love Affair With Pearls

On March 18, 2023, my article, The Power of Pearls was published. In that article, I wrote about the history...

Maria in Vancouver6 months ago

7 Creative Ways to Propose!

Sometime in April 2022, my significant other gave me a heads up: he will be proposing to me on May...