Connect with us

Instagram

Organisms without brains can learn, too – so what does it mean to be a thinking creature?

Published

on

Purple Jellyfish in Water in Close Up Shot

One skill above all – learning – has proven key to the good life. (Pexels Photo)

The brain is an evolutionary marvel. By shifting the control of sensing and behaviour to this central organ, animals (including us) are able to flexibly respond and flourish in unpredictable environments. One skill above all – learning – has proven key to the good life.

But what of all the organisms that lack this precious organ? From jellyfish and corals to our plant, fungi and single-celled neighbours (such as bacteria), the pressure to live and reproduce is no less intense, and the value of learning is undiminished.

Recent research on the brainless has probed the murky origins and inner workings of cognition itself, and is forcing us to rethink what it means to learn.

Learning about learning

Learning is any change in behaviour as a result of experience, and it comes in many forms. At one end of the spectrum sits non-associative learning. Familiar to anyone who has “tuned out” the background noise of traffic or television, it involves turning up (sensitising) or dialling down (habituating) one’s response with repeated exposure.

Further along is associative learning, in which a cue is reliably tied to a behaviour. Just as the crinkling of a chip packet brings my dog running, so too the smell of nectar invites pollinators to forage for a sweet reward.

Higher still are forms like conceptual, linguistic and musical learning, which demand complex coordination and the ability to reflect on one’s own thinking. They also require specialised structures within the brain, and a large number of connections between them. So, to our knowledge, these types of learning are limited to organisms with sufficient “computing power” – that is, with sufficiently complex brains.

The presumed relationship between brain complexity and cognitive ability, however, is anything but straightforward when viewed across the tree of life.

This is especially true of the fundamental forms of learning, with recent examples reshaping our understanding of what was thought possible.

Who needs a brain?

Jellyfish, jelly-combs, and sea anemones stand among the earliest ancestors of animals, and share the common feature of lacking a centralised brain.

Nonetheless, the beadlet anemone (Actinia equina) is able to habituate to the presence of nearby clones. Under normal circumstances it violently opposes any encroachment on its territory by other anemones. When the intruders are exact genetic copies of itself, however, it learns to recognise them over repeated interactions, and contain its usual aggression.

A recent study has now shown box jellyfish too are avid learners, and in an even more sophisticated manner. Though they possess only a few thousand neurons (nerve cells) clustered around their four eyes, they are able to associate changes in light intensity with tactile (touch) feedback and adjust their swimming accordingly.

This allows for more precise navigation of their mangrove-dominated habitats, and so improves their odds as venomous predators.

No neurons, no problem

Stretching our instincts further, evidence now abounds for learning in organisms that lack even the neuronal building blocks of a brain.

Slime moulds are single-celled organisms that belong to the protist group. They bear a passing resemblance to fungi, despite being unrelated. Recently (and inaccurately) popularised on TV as zombie-making parasites, they also offer a striking case study in what the brainless can achieve.

Elegant experiments have documented a suite of cognitive tricks, from remembering routes to food, to using past experience to inform future foraging, and even learning to ignore bitter caffeine in search of nutritious rewards.

Plants too can be counted among the brainless thinkers. Venus flytraps use clever sensors to remember and tally up the touches of living prey. This allows them to close their traps and begin digestion only when they’re sure of a nutritious meal.

In less gruesome examples, the shameplant (Mimosa pudica) curls and droops its leaves to protect itself from physical disturbance. This is an energetically costly activity, however, which is why it can habituate and learn to ignore repeated false alarms. Meanwhile, the garden pea can seemingly learn to associate a gentle breeze, itself uninteresting, with the presence of essential sunlight (though this finding has not gone unchallenged).

These results have driven calls to consider plants as cognitive and intelligent agents, with the ensuing debate spanning science and philosophy.

Thinking big

Learning, then, is not the sole province of those with a brain, or even the rudiments of one. As evidence of cognitive prowess in the brainless continues to accumulate, it challenges deep intuitions about the biology of sensation, thought, and behaviour more generally.

The implications also reach beyond science into ethics, as with recent advances in our understanding of nociception, or pain perception. Do fish, for example, feel pain, despite not having the requisite brain structures like those of primates? Yes. What about insects, with an even simpler arrangement of an order-of-magnitude fewer neurons? Probably.

And if such organisms can learn and feel, albeit in ways unfamiliar to us, what does it say about how we treat them in our recreational, research and culinary pursuits?

Above all else, these curious and diverse forms of life are a testament to the creative power of adaptive evolution. They invite us to reflect on our often-assumed seat at the apex of the tree of life, and remind us of the inherent value in studying, appreciating and conserving lives very different from our own.The Conversation

Thomas White, Senior lecturer, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Maria in Vancouver

Maria in Vancouver2 weeks ago

Fantabulous Christmas Party Ideas

It’s that special and merry time of the year when you get to have a wonderful excuse to celebrate amongst...

Lifestyle3 weeks ago

How To Do Christmas & Hanukkah This Year

Christmas 2024 is literally just around the corner! Here in Vancouver, we just finished celebrating Taylor Swift’s last leg of...

Lifestyle2 months ago

Nobody Wants This…IRL (In Real Life)

Just like everyone else who’s binged on Netflix series, “Nobody Wants This” — a romcom about a newly single rabbi...

Lifestyle2 months ago

Family Estrangement: Why It’s Okay

Family estrangement is the absence of a previously long-standing relationship between family members via emotional or physical distancing to the...

Lifestyle3 months ago

Becoming Your Best Version

By Matter Laurel-Zalko As a woman, I’m constantly evolving. I’m constantly changing towards my better version each year. Actually, I’m...

Lifestyle3 months ago

The True Power of Manifestation

I truly believe in the power of our imagination and that what we believe in our lives is an actual...

Maria in Vancouver5 months ago

DECORATE YOUR HOME 101

By Matte Laurel-Zalko Our home interiors are an insight into our brains and our hearts. It is our own collaboration...

Maria in Vancouver5 months ago

Guide to Planning a Wedding in 2 Months

By Matte Laurel-Zalko Are you recently engaged and find yourself in a bit of a pickle because you and your...

Maria in Vancouver5 months ago

Staying Cool and Stylish this Summer

By Matte Laurel-Zalko I couldn’t agree more when the great late Ella Fitzgerald sang “Summertime and the livin’ is easy.”...

Maria in Vancouver6 months ago

Ageing Gratefully and Joyfully

My 56th trip around the sun is just around the corner! Whew. Wow. Admittedly, I used to be afraid of...