Connect with us

Art and Culture

Curved origami offers a creative route to making robots and other mechanical devices

Published

on

Curved folding is a simple way to give robots the ability to vary the amount of stiffness they use to interact with different objects and environments.

(File photo: Daniel Alvasd/Unsplash)

The Research Brief is a short take about interesting academic work.

The big idea

Building robotic grippers that can firmly grasp heavy objects and also gently grasp delicate ones usually requires complicated sets of gears, hinges and motors. But it turns out that it’s also possible to make grippers out of simple sheets of flexible material with the right creases in them.

Our lab at Arizona State University has designed curved fold patterns that can change stiffness and flexibility. Flexible materials shaped with these patterns can be used to make simple, inexpensive robotic grippers, swimming robots and other mechanical devices.

People naturally vary the amount of stiffness needed to handle fragile and sturdy objects appropriately. Robots interact with the environment in the same way. Curved folding is a simple way to give robots the ability to vary the amount of stiffness they use to interact with different objects and environments.

Our team’s idea was inspired by origami, the art of paper folding. Origami can be stiff or flexible depending on its folding pattern, but it is hard to give origami a range of stiffnesses.

To overcome this problem, we replaced straight origami folding lines, or creases, with curved creases. By using multiple curved lines between two points rather than just one straight line, a curved origami structure can take on multiple shapes. We found that each shape has its own unique stiffness. Building a robotic gripper, for example, based on this design allows it to apply different amounts of force to objects depending on which curved crease the robot uses.

Compared with other methods for variable stiffness, this method is simple and compact, which means it can be used to make small and light devices.

Why it matters

Changing stiffness is important and ubiquitous in nature, and it’s a key variable in engineering. A heavy-duty robot gripper needs high stiffness, or low flexibility, to lift heavy objects. Other robot grippers need low stiffness, or high flexibility, to protect fragile objects.

Changing between a stiff state and a flexible state is critical in robots, but today’s adjustable stiffness systems are commonly bulky and cannot be used in micro-robots or soft robots. Micro-robots include insect-size robots being developed to monitor infrastructure and the environment. Soft robots under development are made of inflatable or flexible materials, which makes them safer to use alongside people. Our curved origami designs have a simple mechanical structure, making them easy to fabricate and control.

What other research is being done

Traditional mechanical structures can also be used to vary stiffness: for example, grippers powered by variable pneumatics or electric motors. Our work is the first to achieve a full range of stiffness control with a simple structure.

The curved origami technique builds on our previous origami-inspired work, including origami-based stretchable lithium ion batteries and origami-inspired structures that can be collapsed and expanded on demand.

What’s next

We are adding more remote control functions to the curved origami structures to trigger the folding. We are considering several different methods such as pneumatic, magnetic and electronic control. With on-board control, curved origami can be applied to fields beyond robotics. One possibility is haptic devices that change their stiffness to give people realistic force feedback in virtual reality. The Conversation

Hanqing Jiang, Professor of Mechanical Engineering, Arizona State University and Zirui Zhai, Ph.D. student in Mechanical Engineering, Arizona State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Maria in Vancouver

Lifestyle1 day ago

How To Do Christmas & Hanukkah This Year

Christmas 2024 is literally just around the corner! Here in Vancouver, we just finished celebrating Taylor Swift’s last leg of...

Lifestyle4 weeks ago

Nobody Wants This…IRL (In Real Life)

Just like everyone else who’s binged on Netflix series, “Nobody Wants This” — a romcom about a newly single rabbi...

Lifestyle1 month ago

Family Estrangement: Why It’s Okay

Family estrangement is the absence of a previously long-standing relationship between family members via emotional or physical distancing to the...

Lifestyle3 months ago

Becoming Your Best Version

By Matter Laurel-Zalko As a woman, I’m constantly evolving. I’m constantly changing towards my better version each year. Actually, I’m...

Lifestyle3 months ago

The True Power of Manifestation

I truly believe in the power of our imagination and that what we believe in our lives is an actual...

Maria in Vancouver4 months ago

DECORATE YOUR HOME 101

By Matte Laurel-Zalko Our home interiors are an insight into our brains and our hearts. It is our own collaboration...

Maria in Vancouver4 months ago

Guide to Planning a Wedding in 2 Months

By Matte Laurel-Zalko Are you recently engaged and find yourself in a bit of a pickle because you and your...

Maria in Vancouver5 months ago

Staying Cool and Stylish this Summer

By Matte Laurel-Zalko I couldn’t agree more when the great late Ella Fitzgerald sang “Summertime and the livin’ is easy.”...

Maria in Vancouver5 months ago

Ageing Gratefully and Joyfully

My 56th trip around the sun is just around the corner! Whew. Wow. Admittedly, I used to be afraid of...

Maria in Vancouver6 months ago

My Love Affair With Pearls

On March 18, 2023, my article, The Power of Pearls was published. In that article, I wrote about the history...